skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Zhiqiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abbass, Kashif (Ed.)
    Forests play a key role in the mitigation of global warming and provide many other vital ecosystem goods and services. However, as forest continues to vanish at an alarming rate from the surface of the planet, the world desperately needs knowledge on what contributes to forest preservation and restoration. Migration, a hallmark of globalization, is widely recognized as a main driver of forest recovery and poverty alleviation. Here, we show that remittance from migrants reinforces forest recovery that would otherwise be unlikely with mere migration, realizing the additionality of payments for ecosystem services for China’s largest reforestation policy, the Conversion of Cropland to Forest Program (CCFP). Guided by the framework that integrates telecoupling and coupled natural and human systems, we investigate forest-livelihood dynamics under the CCFP through the lens of rural out-migration and remittance using both satellite remote sensing imagery and household survey data in two representative sites of rural China. Results show that payments from the CCFP significantly increases the probability of sending remittance by out-migrants to their origin households. We observe substantial forest regeneration and greening surrounding households receiving remittance but forest decline and browning in proximity to households with migrants but not receiving remittance, as measured by forest coverage and the Enhanced Vegetation Index derived from space-borne remotely sensed data. The primary mechanism is that remittance reduces the reliance of households on natural capital from forests, particularly fuelwood, allowing forests near the households to recover. The shares of the estimated ecological and economic additionality induced by remittance are 2.0% (1.4%∼3.8%) and 9.7% (5.0%∼15.2%), respectively, to the baseline of the reforested areas enrolled in CCFP and the payments received by the participating households. Remittance-facilitated forest regeneration amounts to 12.7% (6.0%∼18.0%) of the total new forest gained during the 2003–2013 in China. Our results demonstrate that remittance constitutes a telecoupling mechanism between rural areas and cities over long distances, influencing the local social-ecological gains that the forest policy intended to stimulate. Thus, supporting remittance-sending migrants in cities can be an effective global warming mitigation strategy. 
    more » « less
  2. Abstract. Secondary organic aerosols (SOA) can exist in liquid, semi-solid or amorphous solid states, which are rarely accounted for in current chemical transport models (CTMs). Missing the information of SOA phase state and viscosity in CTMs impedes accurate representation of SOA formation and evolution, affecting the predictions of aerosol effects on air quality and climate. We have previously developed a method to estimate the glass transition temperature (Tg) of an organic compound based on volatility. In this study, we apply this method to predict the phase state and viscosity of SOA particles over China in summer of 2018 using the Weather Research and Forecasting model coupled to Chemistry (WRF-Chem). This is the first time that spatial distributions of the SOA phase state over China are investigated by a regional CTM. Simulations show that Tg values of dry SOA range from ~287 K to 305 K, with higher values in the northwestern China where SOA particles have larger mass fractions of low volatility compounds. Considering water uptake by SOA particles, the SOA viscosity also shows a prominent geospatial gradient that highly viscous or solid SOA particles are mainly found in the northwestern China. The lowest and highest SOA viscosity values both occur over the Qinghai-Tibet Plateau that the solid phase state is predicted over dry and high-altitude areas and the liquid phase state is predicted mainly in the south of the plateau with high relative humidity during the summer monsoon season. The characteristic mixing timescale of organic molecules in 200 nm SOA particles is calculated based on the simulated particle viscosity and the bulk diffusion coefficient of organic molecules. Calculations show that during the simulated period the percent time of the mixing timescale longer than 1 h is > 70 % at the surface and at 500 hPa in most areas of the northern China, indicating that kinetic partitioning considering the bulk diffusion in viscous particles may be required for more accurate prediction of SOA mass concentrations and size distributions over these areas. Sensitivity simulations show that including the formation of extremely low-volatile organic compounds, the percent time that a SOA particle is in the liquid phase state decreases by up to 12 % in the southeastern China during the simulated period. With an assumption that the organic and inorganic compounds are always internally mixed in one phase, we show that the water absorbed by inorganic species can significantly lower the simulated viscosity over the southeastern China. This indicates that constraining the uncertainties in simulated SOA volatility distributions and accurately predicting the occurrence of phase separation would improve prediction of viscosity in multicomponent particles in southeastern China. 
    more » « less
  3. null (Ed.)